在子线程中通过join()方法指定顺序
通过join()方法使当前线程“阻塞”,等待指定线程执行完毕后继续执行。
举例:在线程thread2中,加上一句thread1.join(),其意义在于,当前线程2运行到此行代码时会进入阻塞状态,直到线程thread1执行完毕后,线程thread2才会继续运行,这就保证了线程thread1与线程thread2的运行顺序。
/**
* <p>
* Description: 线程测试Demo
* </p>
*
* @author songzixian
* @version v2.0.0
* @create 2022-05-08 0:50
* @see com.songzixian.constant
*/
public class ThreadJoinDemo {
public static void main(String[] args) throws InterruptedException {
final Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("访问宋子宪博客!");
}
});
final Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
try {
thread1.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("成功访问中!");
}
});
final Thread thread3 = new Thread(new Runnable() {
@Override
public void run() {
try {
thread2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("关闭博客!");
}
});
//下面三行代码顺序可随意调整,程序运行结果不受影响,因为我们在子线程中通过“join()方法”已经指定了运行顺序。
thread3.start();
thread2.start();
thread1.start();
}
}
控制台运行结果:
访问宋子宪博客!
成功访问中!
关闭博客!
在主线程中通过join()方法指定顺序
简单说一下子线程与主线程的区别,子线程指的是发生在Thread内部的代码,主线程指的是发生在main函数中的代码,我们可以在main函数中通过join()方法让主线程阻塞等待以达到指定顺序执行的目的。
/**
* <p>
* Description: 线程测试Demo
* </p>
*
* @author songzixian
* @version v2.0.0
* @create 2022-05-08 0:50
* @see com.songzixian.constant
*/
public class ThreadJoinDemo {
public static void main(String[] args) throws InterruptedException {
final Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("访问宋子宪博客!");
}
});
final Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("成功访问中!");
}
});
final Thread thread3 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("关闭博客!");
}
});
thread1.start();
thread1.join();
thread2.start();
thread2.join();
thread3.start();
}
}
通过倒数计时器CountDownLatch实现
public class ThreadJoinDemo {
private static CountDownLatch countDownLatch1 = new CountDownLatch(1);
private static CountDownLatch countDownLatch2 = new CountDownLatch(1);
public static void main(String[] args) {
final Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("访问宋子宪博客!");
countDownLatch1.countDown();
}
});
final Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
try {
countDownLatch1.await();
System.out.println("成功访问中!");
countDownLatch2.countDown();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
final Thread thread3 = new Thread(new Runnable() {
@Override
public void run() {
try {
countDownLatch2.await();
System.out.println("关闭博客!");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
//下面三行代码顺序可随意调整,程序运行结果不受影响
thread3.start();
thread1.start();
thread2.start();
}
}
通过创建单一化线程池newSingleThreadExecutor()实现
CountDownLatch通过计数器提供了更灵活的控制,只要检测到计数器为0当前线程就可以往下执行而不用管相应的thread是否执行完毕。
public class ThreadJoinDemo {
static ExecutorService executorService = Executors.newSingleThreadExecutor();
public static void main(String[] args) {
final Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("访问宋子宪博客!");
}
});
final Thread thread2 =new Thread(new Runnable() {
@Override
public void run() {
System.out.println("成功访问中!!");
}
});
final Thread thread3 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("关闭博客!");
}
});
executorService.submit(thread1);
executorService.submit(thread2);
executorService.submit(thread3);
executorService.shutdown(); //使用完毕记得关闭线程池
}
}